

Matrix methods in the analysis of complex networks

Introduction

Dario Fasino Rome, Univ. "Tor Vergata", November 22–24, 2022

- An introduction to complex network analysis
- Classic and spectral centrality indices
- Random walks: classic and second-order
- Meso-scale structures and community detection

... with an emphasis on matrix techniques.

Complex networks

A complex network is a mathematical representation of a complex system: objects + relationships.

Network science

It's a branch of data science

The analysis of complex networks includes various aspects:

- Empirical What it is made of? How it works?
- Structure
 - Microscopic (node level): quantify importance/participation of individual nodes
 - Mesoscopic (subnetwork level): Identify communities, split/partition networks into regions
 - Macroscopic (networks as a whole): Quantify macroscopic properties
- Dynamics Modeling processes on networks: diffusion, formation, navigation, routing, degradation...
- Control optimization.

Graphs and networks

A network (or graph) is a collection of vertices joined by edges: $\mathcal{G} = (V, E)$ where $E \subseteq V \times V$. Edges represent dyadic relationships between nodes.

Edges can be directed $(i \rightarrow j)$ or undirected $(i \sim j)$. In some cases they can be associated to a weight, which indicates length/strength/cost...of that edge \rightarrow weighted graph.

Figure 1: (a) A graph. (b) A digraph. (c) A weighted graph.

A loop in \mathcal{G} is an edge from a node to itself. Loops are often ignored or excluded.

A simple graph is an unweighted graph without multiple edges or loops.

A walk of length k in \mathcal{G} is a set of nodes $v_1, v_2, \ldots, v_k, v_{k+1}$ such that $(v_i, v_{i+1}) \in E$ for all $1 \leq j \leq k$. A closed walk is a walk where $v_1 = v_{k+1}$.

A path is a walk with no repeated nodes. The geodetic distance $d(v_i, v_j)$ between two nodes is the length of the shortest path connecting v_i and v_j . We let $d(v_i, v_j) = \infty$ if no such path exists.

An undirected, loopless graph is a simple graph.

Formal definitions

A graph with |V| = n is characterized by its adjacency matrix $A \in \mathbb{R}^{n \times n}$,

$$A_{ij} = \begin{cases} 1 & i \to j & \text{ i.e., } (i,j) \in E \\ 0 & i \not\to j & \text{ i.e., } (i,j) \notin E. \end{cases}$$

If edges are weighted then A_{ij} is the weight of edge $i \rightarrow j$ (weighted adjacency matrix, or weight matrix)

Formal definitions

A graph with |V| = n is characterized by its adjacency matrix $A \in \mathbb{R}^{n \times n}$,

$$A_{ij} = \begin{cases} 1 & i \to j & \text{ i.e., } (i,j) \in E \\ 0 & i \not\to j & \text{ i.e., } (i,j) \notin E. \end{cases}$$

Theorem

The number of walks of length k that originate at node i and terminate at node j is $(A^k)_{ij}$.

For example, the number of closed walks of length k is

$$\sum_{i=1}^n (A^k)_{ii} = \operatorname{trace}(A^k) = \sum_{i=1}^n \lambda_i^k.$$

Formal definitions: degrees

If G = (V, E) is undirected, the degree d_i of node i ∈ V is the number of edges incident to i in G. In other words, d_i is the number of immediate neighbors of i in G:

$$d_i = \sum_{i=1}^n A_{ij}, \qquad d = Ae_i$$

where $e = (1, ... 1)^{T}$.

For a directed graph, we define the in-degree of node *i* as the number dⁱⁿ_i of edges ending in *i*, and the out-degree of *i* as as the number d^{out}_i of edges originating at *i*. In terms of the (nonsymmetric) adjacency matrix,

$$d^{in} = A^{\mathrm{T}}e, \qquad d^{out} = Ae,$$

Hence, the column sums of A give the in-degrees and the row sums give the out-degrees.

Any renumbering of the graph nodes results in a symmetric permutation $A \mapsto PAP^{T}$ of the adjacency matrix of the graph.

Isomorphic graphs: $\mathcal{G}_1 \simeq \mathcal{G}_2$

Two graphs $\mathcal{G}_1 = (V_1, E_1)$ and $\mathcal{G}_2 = (V_2, E_2)$ are isomorphic if there is an invertible map $\phi : V_1 \mapsto V_2$ such that

 $(i,j) \in E_1 \iff (\phi(i),\phi(j)) \in E_2.$

Any renumbering of the graph nodes results in a symmetric permutation $A \mapsto PAP^{T}$ of the adjacency matrix of the graph.

Isomorphic graphs: $\mathcal{G}_1 \simeq \mathcal{G}_2$ Two graphs $\mathcal{G}_1 = (V_1, E_1)$ and $\mathcal{G}_2 = (V_2, E_2)$ are isomorphic if there is an invertible map $\phi : V_1 \mapsto V_2$ such that

 $(i,j) \in E_1 \iff (\phi(i),\phi(j)) \in E_2.$

Equivalently: The graphs \mathcal{G}_1 and \mathcal{G}_2 with adjacency matrices A_1 and A_2 are isomorphic if there is a permutation matrix P such that $A_2 = PA_1P^{T}$.

Graph automorphism

Let A be the adjacency matrix of \mathcal{G} . If there exists a permutation matrix P such that $A = PAP^{T}$ then P is an automorphism of \mathcal{G} .

Any renumbering of the graph nodes results in a symmetric permutation $A \mapsto PAP^{T}$ of the adjacency matrix of the graph.

Isomorphic graphs: $\mathcal{G}_1 \simeq \mathcal{G}_2$ Two graphs $\mathcal{G}_1 = (V_1, E_1)$ and $\mathcal{G}_2 = (V_2, E_2)$ are isomorphic if there is an invertible map $\phi : V_1 \mapsto V_2$ such that

$$(i,j) \in E_1 \quad \Longleftrightarrow \quad (\phi(i),\phi(j)) \in E_2$$

Nodes that are permuted by automorphisms are said to be similar or equivalent, and are collected into orbits.

Example. This graph has a lot of automorphisms:

 $\label{eq:orbits: } {0} \mbox{ (1,2,3,4,5), {6}, {7}, {8,9,10,11,12}. }$

Any renumbering of the graph nodes results in a symmetric permutation $A \mapsto PAP^{T}$ of the adjacency matrix of the graph.

Isomorphic graphs: $\mathcal{G}_1 \simeq \mathcal{G}_2$ Two graphs $\mathcal{G}_1 = (V_1, E_1)$ and $\mathcal{G}_2 = (V_2, E_2)$ are isomorphic if there is an invertible map $\phi : V_1 \mapsto V_2$ such that

$$(i,j) \in E_1 \quad \Longleftrightarrow \quad (\phi(i),\phi(j)) \in E_2.$$

Topological index

A topological index (or network topology measure) is a function $\tau: \{\mathcal{G}\} \mapsto \mathbb{R}$ such that

$$\mathcal{G}_1 \simeq \mathcal{G}_2 \implies \tau(\mathcal{G}_1) = \tau_{\mathsf{C}} \mathcal{G}_2.$$

Let $\mathcal{G} = (V, E)$. A centrality index is a function $f : V \mapsto \mathbb{R}$ which quantifies some kind of "importance" or "participation" of individual nodes.

Centrality index

A centrality index is a family of functions $f_{\mathcal{G}} : V \mapsto \mathbb{R}$ such that if ϕ is a graph isomorphism between \mathcal{G}_1 and \mathcal{G}_2 and $\phi(i) = j$ then $f_{\mathcal{G}_2}(j) = f_{\mathcal{G}_1}(i)$.

In other words, if c is the vector of node centralities of a graph \mathcal{G} with adjacency matrix A and \mathcal{G}' is a graph with adjacency matrix $A' = PAP^{T}$ with P a permutation matrix, then the vector of node centralities for \mathcal{G}' is given by c' = Pc.

Freeman's centrality indices

- Degree Number of each node's connections
- Closeness Inverse average geodetic distance of a node from every other node
- Betweenness Fraction of shortest (geodetic) paths passing through a given node.

Moscow's rise in medieval Russia

Forrest R. Pitts. The medieval river trade network of Russia revisited. Social Networks, 1 (1978/79), 285–292.

The prominence of the Medici in Renaissance Florence

John F. Padgett, Christopher K. Ansell. Robust Action and the Rise of the Medici, 1400-1434. *Amer. J. Sociology*, 98 (1993), 1259–1319. The CentiServer web site www.centiserver.org/centrality/ lists 400^+ centrality indices.

Social prediction tasks benefit by combining many different types of information; [...] adding your new solution to an ensemble of existing solutions enables better predictions for some tricky problems.

David Gleich, ACM Crossroads, 19 (2013), 32-36.

References

🛸 A. L. Barabási, M. Pósfai. Network Science. Cambridge University Press, 2016.

📎 Ernesto Estrada, Philip Knight. A First Course in Network Theory. Oxford University Press, 2015.

🕨 Mark E. J. Newman. Networks. An introduction. Oxford University Press, 2010.

Perron Thm. (1907)

Let A > O and let $\rho(A)$ be its spectral radius. Then $\rho(A)$ is a simple, dominant eigenvalue of A. Moreover, $\rho(A) > 0$ and $Ax = \rho(A)x$ with x > 0.

Remarks:

- $\rho(A)$ is an eigenvalue.
- If λ is another eigenvalue then $|\lambda| < \rho(A)$.
- If y is an eigenvector of ρ(A), that is, Ay = ρ(A)y, then y must be a multiple of x.

A summary of Perron–Frobenius theory

Frobenius Thm. (1913)

Let $A \ge O$ and irreducible. Let $\rho(A)$ be its spectral radius. Then $\rho(A)$ is a simple eigenvalue of A. Moreover, $\rho(A) > 0$ and $Ax = \rho(A)x$ with x > 0.

Remarks:

- A positive eigenvector associated to ρ(A) is a Perron vector.
 Moreover, ρ(A) is the Perron eigenvalue of A.
- If $A \ge O$ then $\rho(A)$ may not be dominant; see $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

A summary of Perron–Frobenius theory

Frobenius Thm. (1913)

Let $A \ge O$ and irreducible. Let $\rho(A)$ be its spectral radius. Then $\rho(A)$ is a simple eigenvalue of A. Moreover, $\rho(A) > 0$ and $Ax = \rho(A)x$ with x > 0.

Definition

A matrix $A \ge 0$ is primitive if $A^k > 0$ for some integer $k \ge 1$.

Corollary

Let $O \le A \in \mathbb{R}^{n \times n}$. If A is primitive then $\rho(A)$ is a simple, dominant eigenvalue of A. Moreover, $\rho(A) > 0$ and $Ax = \rho(A)x$ with x > 0. Other results in the Perron-Frobenius theory:

• Let
$$A \ge O$$
. If $Ax = \lambda x$ and $x > 0$ then $\lambda = \rho(A)$.

• Let
$$A \ge O$$
, $r_i = \sum_{j=1}^n A_{ij}$ and $c_i = \sum_{j=1}^n A_{ji}$. Then

 $\min_i r_i \leq \rho(A) \leq \max_i r_i, \qquad \min_i c_i \leq \rho(A) \leq \max_i c_i.$

• Let $O \leq A \leq B$. Then $\rho(A) \leq \rho(B)$.

The power method

The power method is a simple iterative method to compute the Perron eigenpair of a nonnegative matrix A.

Unnormalized version

- Choose *x*₀ ≥ 0
- For k = 1, 2, 3...

• Compute
$$x_k = Ax_{k-1}$$

Normalized version

• Choose $x_0 \ge 0$, $||x_0|| = 1$

• For
$$k = 1, 2, 3...$$

• Compute
$$y_k = Ax_{k-1}$$

• Set
$$x_k = y_k / \|y_k\|$$

The power method

The power method is a simple iterative method to compute the Perron eigenpair of a nonnegative matrix A.

Unnormalized version

Choose *x*₀ ≥ 0

• For
$$k = 1, 2, 3 \dots$$

• Compute
$$x_k = Ax_{k-1}$$

Normalized version

• Choose $x_0 \ge 0$, $||x_0|| = 1$

• For
$$k = 1, 2, 3...$$

- If ρ(A) is simple and dominant then x_i approaches a Perron eigenvector.
- Convergence ratio is $|\lambda_2|/\lambda_1$.
- Define $\lambda^{(k)} = e^{T}Ax_{k}/e^{T}x_{k}$. Then $\lambda^{(k)}$ converges to $\rho(A)$.
- Of course, the iteration must be terminated!
 - Set a maximum number for iterations
 - Stop when $\lambda^{(k)}$ "converges."