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Outline

An introduction to complex network analysis

Classic and spectral centrality indices

Random walks: classic and second-order

Meso-scale structures and community detection

... with an emphasis on matrix techniques.



Complex networks

A complex network is a mathematical representation of a complex
system: objects + relationships.



Network science

It's a branch of data science

The analysis of complex networks includes various aspects:

e Empirical — What it is made of? How it works?

o Structure
o Microscopic (node level): quantify importance/participation of
individual nodes
o Mesoscopic (subnetwork level): Identify communities,
split/partition networks into regions
o Macroscopic (networks as a whole): Quantify macroscopic
properties

e Dynamics — Modeling processes on networks: diffusion, formation,
navigation, routing, degradation. ..

o Control — optimization.



Graphs and networks
A network (or graph) is a collection of vertices joined by edges:
G = (V,E) where E C V x V. Edges represent dyadic relationships
between nodes.

Edges can be directed (i — j) or undirected (i ~ j). In some cases they
can be associated to a weight, which indicates length/strength/cost. . . of
that edge ~~ weighted graph.
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Figure 1: (a) A graph. (b) A digraph. (c) A weighted graph.



Formal definitions

A loop in G is an edge from a node to itself. Loops are often ignored or
excluded.

A simple graph is an unweighted graph without multiple edges or loops.

A walk of length k in G is a set of nodes vy, v, ..., vk, Vk41 such that
(Viyviz1) € E for all 1 <j < k. A closed walk is a walk where vi = vj ;.

A path is a walk with no repeated nodes. The geodetic distance d(v;, v;)
between two nodes is the length of the shortest path connecting v; and
vj. We let d(v;, vj) = oo if no such path exists.

An undirected, loopless graph is a simple graph.



Formal definitions

A graph with |V| = n is characterized by its adjacency matrix A € R"*",

J1r = e, (i) €E
oo A e (W) ¢E
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If edges are weighted then Aj; is the weight of edge i — j
(weighted adjacency matrix, or weight matrix)



Formal definitions

A graph with |V| = n is characterized by its adjacency matrix A € R"*",

a1 i ie., (i,j) € E
Tlo A e () EE

Theorem

The number of walks of length k that originate at node i/ and terminate
at node j is (AX);.

For example, the number of closed walks of length k is

n

Z(Ak),, = trace Ak Z )\k

i=1



Formal definitions: degrees

e If G =(V,E) is undirected, the degree d; of node i € V is the

number of edges incident to i in G. In other words, d; is the number
of immediate neighbors of / in G:

d,' = Zn: A,'J', ] = Ae,
i=1

where e = (1,...1)".

For a directed graph, we define the in-degree of node i as the
number di" of edges ending in i, and the out-degree of i as as the
number d°“* of edges originating at i. In terms of the
(nonsymmetric) adjacency matrix,

d" =A%,  d = Ae,

Hence, the column sums of A give the in-degrees and the row sums
give the out-degrees.



Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation
A — PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G; ~ G»
Two graphs G; = (V4, E1) and G, = (W, E>) are isomorphic if there is an
invertible map ¢ : V4 — V5 such that

(I’J) € El = (¢(’)7¢(])) € E2~

Example




Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation
A — PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G; ~ G»
Two graphs G; = (V4, E1) and G, = (W, E>) are isomorphic if there is an
invertible map ¢ : V4 — V5 such that

(I’J) € El = (¢(’)7¢(J)) € E2~

Equivalently: The graphs G; and G, with adjacency matrices A; and Ap
are isomorphic if there is a permutation matrix P such that A, = PA;P™.

Graph automorphism

Let A be the adjacency matrix of G. If there exists a permutation matrix
P such that A = PAPT then P is an automorphism of G.




Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation
A — PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G; ~ G»
Two graphs G; = (V4, E1) and G, = (W, E>) are isomorphic if there is an
invertible map ¢ : V4 — V5 such that

(I’J) € El = (¢(’)7¢(J)) € E2~

Nodes that are permuted by automorphisms are said to be similar
or equivalent, and are collected into orbits.
Example. This graph has a lot of automorphisms:

Orbits: {1,2,3,4,5},{6},{7},{8,9,10,11,12}.



Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation
A — PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G; ~ G»
Two graphs G; = (V4, E1) and G, = (W, E>) are isomorphic if there is an
invertible map ¢ : V4 — V5 such that

(I’J) € El = (¢(’)7¢(J)) € E2~

Topological index

A topological index (or network topology measure) is a function
7:{G} — R such that

G1~ Gy = 7(G1) = 1G2).




Centrality indices

Let G = (V, E). A centrality index is a function f : V — R which
quantifies some kind of “importance” or “participation” of individual

nodes.

Centrality index

A centrality index is a family of functions fg : V — R such that
if ¢ is a graph isomorphism between G; and G, and ¢(i) = j
then fgz(j) e fgl(i).

In other words, if ¢ is the vector of node centralities of a graph G with
adjacency matrix A and G’ is a graph with adjacency matrix A’ = PAP™
with P a permutation matrix, then the vector of node centralities for G’

is given by ¢’ = Pc.
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Freeman’s centrality indices

o Degree Number of each node’s connections
o Closeness Inverse average geodetic distance of a node from every
other node

e Betweenness Fraction of shortest (geodetic) paths passing through a

given node.

Highest

betweenness gogt
centrally closeness
centrality

Highest
eigenvector
centrality

Highest
degree

@ Linton C. Freeman. Centrality in social networks—conceptual
clarification. Social Networks, 1 (1978/79), 215-239.



Moscow’s rise in medieval Russia
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@ Forrest R. Pitts. The medieval river trade network of Russia
revisited. Social Networks, 1 (1978/79), 285-292.
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The prominence of the Medici in Renaissance Florence
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@ John F. Padgett, Christopher K. Ansell.
Robust Action and the Rise of the Medici, 1400-1434.
Amer. J. Sociology, 98 (1993), 1259-1319.
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How many centralities?

The CentiServer web site www.centiserver.org/centrality/
lists 400" centrality indices.

Social prediction tasks benefit by combining many different
types of information; [...| adding your new solution to an

ensemble of existing solutions enables better predictions
for some tricky problems.

David Gleich, ACM Crossroads, 19 (2013), 32-36.
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A summary of Perron—Frobenius theory

Perron Thm. (1907)

Let A> O and let p(A) be its spectral radius.
Then p(A) is a simple, dominant eigenvalue of A.
Moreover, p(A) > 0 and Ax = p(A)x with x > 0.

Remarks:

e p(A) is an eigenvalue.
o If X is another eigenvalue then |A| < p(A).

e If y is an eigenvector of p(A), that is, Ay = p(A)y, then y
must be a multiple of x.
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A summary of Perron—Frobenius theory

Frobenius Thm. (1913)

Let A > O and irreducible. Let p(A) be its spectral radius.
Then p(A) is a simple eigenvalue of A.

Moreover, p(A) > 0 and Ax = p(A)x with x > 0.

Remarks:

o A positive eigenvector associated to p(A) is a Perron vector.
Moreover, p(A) is the Perron eigenvalue of A.

o If A> O then p(A) may not be dominant; see A= (9}).
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A summary of Perron—Frobenius theory

Frobenius Thm. (1913)

Let A > O and irreducible. Let p(A) be its spectral radius.
Then p(A) is a simple eigenvalue of A.

Moreover, p(A) > 0 and Ax = p(A)x with x > 0.

Definition

A matrix A > O is primitive if AKX > O for some integer k > 1.

Corollary

Let O < Aec R"™" If Ais primitive

then p(A) is a simple, dominant eigenvalue of A.
Moreover, p(A) > 0 and Ax = p(A)x with x > 0.
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A summary of Perron—Frobenius theory

Other results in the Perron—Frobenius theory:

o Let A> O. If Ax = Ax and x > 0 then A = p(A).
o let A>0, ri= Z}’Zl Aj and ¢; = Z};l Aji. Then

min r; < p(A) < maxr;,
! !

o Let O < A< B. Then p(A) < p(B).

min ¢; < p(A) < maxc;.
1 1
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The power method

The power method is a simple iterative method to compute the
Perron eigenpair of a nonnegative matrix A.

. . Normalized version
Unnormalized version

e Choose xp > 0, ||xo]| =1
e For k=1,2,3...
o Compute yx = Axx_1
o Set xk = yi/||ykll

e Choose x5 > 0
o For k=1,2,3...
o Compute xx = Axx_1
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The power method

The power method is a simple iterative method to compute the
Perron eigenpair of a nonnegative matrix A.

. . Normalized version
Unnormalized version
e Choose xp > 0, ||xo|| =1

o Fork=1,2,3...
o Compute yx = Axx_1
o Set xx = yi/ |l y«ll

e Choose x5 > 0
o Fork=1,2,3...

o Compute xx = Axx_1

If p(A) is simple and dominant then x; approaches a Perron
eigenvector.

Convergence ratio is [A2|/A1.

Define A(K) = eTAx, /eTx,. Then A(K) converges to p(A).
Of course, the iteration must be terminated!

e Set a maximum number for iterations

o Stop when M%) “converges.” .



