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Outline

• An introduction to complex network analysis

• Classic and spectral centrality indices

• Random walks: classic and second-order

• Meso-scale structures and community detection

. . . with an emphasis on matrix techniques.
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Complex networks

A complex network is a mathematical representation of a complex

system: objects + relationships.
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Network science

It’s a branch of data science

The analysis of complex networks includes various aspects:

• Empirical — What it is made of? How it works?

• Structure

• Microscopic (node level): quantify importance/participation of

individual nodes

• Mesoscopic (subnetwork level): Identify communities,

split/partition networks into regions

• Macroscopic (networks as a whole): Quantify macroscopic

properties

• Dynamics — Modeling processes on networks: diffusion, formation,

navigation, routing, degradation. . .

• Control — optimization.
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Graphs and networks

A network (or graph) is a collection of vertices joined by edges:

G = (V ,E ) where E ⊆ V × V . Edges represent dyadic relationships

between nodes.

Edges can be directed (i → j) or undirected (i ∼ j). In some cases they

can be associated to a weight, which indicates length/strength/cost. . . of

that edge  weighted graph.

Figure 1: (a) A graph. (b) A digraph. (c) A weighted graph.
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Formal definitions

A loop in G is an edge from a node to itself. Loops are often ignored or

excluded.

A simple graph is an unweighted graph without multiple edges or loops.

A walk of length k in G is a set of nodes v1, v2, . . . , vk , vk+1 such that

(vi , vi+1) ∈ E for all 1 ≤ j ≤ k . A closed walk is a walk where v1 = vk+1.

A path is a walk with no repeated nodes. The geodetic distance d(vi , vj)

between two nodes is the length of the shortest path connecting vi and

vj . We let d(vi , vj) =∞ if no such path exists.

An undirected, loopless graph is a simple graph.
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Formal definitions

A graph with |V | = n is characterized by its adjacency matrix A ∈ Rn×n,

Aij =

{
1 i → j i.e., (i , j) ∈ E

0 i 6→ j i.e., (i , j) /∈ E .

Example
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0 1 0 0

 .

If edges are weighted then Aij is the weight of edge i → j

(weighted adjacency matrix, or weight matrix)
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Formal definitions

A graph with |V | = n is characterized by its adjacency matrix A ∈ Rn×n,

Aij =

{
1 i → j i.e., (i , j) ∈ E

0 i 6→ j i.e., (i , j) /∈ E .

Theorem

The number of walks of length k that originate at node i and terminate

at node j is (Ak)ij .

For example, the number of closed walks of length k is

n∑
i=1

(Ak)ii = trace(Ak) =
n∑

i=1

λki .
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Formal definitions: degrees

• If G = (V ,E ) is undirected, the degree di of node i ∈ V is the

number of edges incident to i in G. In other words, di is the number

of immediate neighbors of i in G:

di =
n∑

i=1

Aij , d = Ae,

where e = (1, . . . 1)T.

• For a directed graph, we define the in-degree of node i as the

number d in
i of edges ending in i , and the out-degree of i as as the

number dout
i of edges originating at i . In terms of the

(nonsymmetric) adjacency matrix,

d in = ATe, dout = Ae,

Hence, the column sums of A give the in-degrees and the row sums

give the out-degrees.
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Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation

A 7→ PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G1 ' G2
Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is an

invertible map φ : V1 7→ V2 such that

(i , j) ∈ E1 ⇐⇒ (φ(i), φ(j)) ∈ E2.

Example
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V2 4 3 2 1
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Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation

A 7→ PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G1 ' G2
Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is an

invertible map φ : V1 7→ V2 such that

(i , j) ∈ E1 ⇐⇒ (φ(i), φ(j)) ∈ E2.

Equivalently: The graphs G1 and G2 with adjacency matrices A1 and A2

are isomorphic if there is a permutation matrix P such that A2 = PA1P
T.

Graph automorphism

Let A be the adjacency matrix of G. If there exists a permutation matrix

P such that A = PAPT then P is an automorphism of G.
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Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation

A 7→ PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G1 ' G2
Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is an

invertible map φ : V1 7→ V2 such that

(i , j) ∈ E1 ⇐⇒ (φ(i), φ(j)) ∈ E2.

Nodes that are permuted by automorphisms are said to be similar

or equivalent, and are collected into orbits.

Example. This graph has a lot of automorphisms:

Orbits: {1, 2, 3, 4, 5}, {6}, {7}, {8, 9, 10, 11, 12}. 9



Graph isomorphisms

Any renumbering of the graph nodes results in a symmetric permutation

A 7→ PAPT of the adjacency matrix of the graph.

Isomorphic graphs: G1 ' G2
Two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is an

invertible map φ : V1 7→ V2 such that

(i , j) ∈ E1 ⇐⇒ (φ(i), φ(j)) ∈ E2.

Topological index

A topological index (or network topology measure) is a function

τ : {G} 7→ R such that

G1 ' G2 =⇒ τ(G1) = τ(G2).
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Centrality indices

Let G = (V ,E ). A centrality index is a function f : V 7→ R which

quantifies some kind of “importance” or “participation” of individual

nodes.

Centrality index

A centrality index is a family of functions fG : V 7→ R such that

if φ is a graph isomorphism between G1 and G2 and φ(i) = j

then fG2(j) = fG1(i).

In other words, if c is the vector of node centralities of a graph G with

adjacency matrix A and G′ is a graph with adjacency matrix A′ = PAPT

with P a permutation matrix, then the vector of node centralities for G′

is given by c ′ = Pc .
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Freeman’s centrality indices

• Degree Number of each node’s connections

• Closeness Inverse average geodetic distance of a node from every

other node

• Betweenness Fraction of shortest (geodetic) paths passing through a

given node.

Linton C. Freeman. Centrality in social networks—conceptual

clarification. Social Networks, 1 (1978/79), 215–239. 11



Moscow’s rise in medieval Russia

Forrest R. Pitts. The medieval river trade network of Russia

revisited. Social Networks, 1 (1978/79), 285–292.
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The prominence of the Medici in Renaissance Florence

John F. Padgett, Christopher K. Ansell.

Robust Action and the Rise of the Medici, 1400-1434.

Amer. J. Sociology, 98 (1993), 1259–1319. 13



How many centralities?

The CentiServer web site www.centiserver.org/centrality/

lists 400+ centrality indices.

Social prediction tasks benefit by combining many different

types of information; [. . . ] adding your new solution to an

ensemble of existing solutions enables better predictions

for some tricky problems.

David Gleich, ACM Crossroads, 19 (2013), 32–36.
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A summary of Perron–Frobenius theory

Perron Thm. (1907)

Let A > O and let ρ(A) be its spectral radius.

Then ρ(A) is a simple, dominant eigenvalue of A.

Moreover, ρ(A) > 0 and Ax = ρ(A)x with x > 0.

Remarks:

• ρ(A) is an eigenvalue.

• If λ is another eigenvalue then |λ| < ρ(A).

• If y is an eigenvector of ρ(A), that is, Ay = ρ(A)y , then y

must be a multiple of x .
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A summary of Perron–Frobenius theory

Frobenius Thm. (1913)

Let A ≥ O and irreducible. Let ρ(A) be its spectral radius.

Then ρ(A) is a simple eigenvalue of A.

Moreover, ρ(A) > 0 and Ax = ρ(A)x with x > 0.

Remarks:

• A positive eigenvector associated to ρ(A) is a Perron vector.

Moreover, ρ(A) is the Perron eigenvalue of A.

• If A ≥ O then ρ(A) may not be dominant; see A =
(
0 1
1 0

)
.
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A summary of Perron–Frobenius theory

Frobenius Thm. (1913)

Let A ≥ O and irreducible. Let ρ(A) be its spectral radius.

Then ρ(A) is a simple eigenvalue of A.

Moreover, ρ(A) > 0 and Ax = ρ(A)x with x > 0.

Definition

A matrix A ≥ O is primitive if Ak > O for some integer k ≥ 1.

Corollary

Let O ≤ A ∈ Rn×n. If A is primitive

then ρ(A) is a simple, dominant eigenvalue of A.

Moreover, ρ(A) > 0 and Ax = ρ(A)x with x > 0.
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A summary of Perron–Frobenius theory

Other results in the Perron–Frobenius theory:

• Let A ≥ O. If Ax = λx and x > 0 then λ = ρ(A).

• Let A ≥ O, ri =
∑n

j=1 Aij and ci =
∑n

j=1 Aji . Then

min
i

ri ≤ ρ(A) ≤ max
i

ri , min
i

ci ≤ ρ(A) ≤ max
i

ci .

• Let O ≤ A ≤ B. Then ρ(A) ≤ ρ(B).
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The power method

The power method is a simple iterative method to compute the

Perron eigenpair of a nonnegative matrix A.

Unnormalized version

• Choose x0 ≥ 0

• For k = 1, 2, 3 . . .

• Compute xk = Axk−1

Normalized version

• Choose x0 ≥ 0, ‖x0‖ = 1

• For k = 1, 2, 3 . . .

• Compute yk = Axk−1
• Set xk = yk/‖yk‖

• If ρ(A) is simple and dominant then xi approaches a Perron

eigenvector.

• Convergence ratio is |λ2|/λ1.

• Define λ(k) = eTAxk/e
Txk . Then λ(k) converges to ρ(A).

• Of course, the iteration must be terminated!

• Set a maximum number for iterations

• Stop when λ(k) “converges.”
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